Evidence for Dynamic Network Regulation of Drosophila Photoreceptor Function from Mutants Lacking the Neurotransmitter Histamine

نویسندگان

  • An Dau
  • Uwe Friederich
  • Sidhartha Dongre
  • Xiaofeng Li
  • Murali K. Bollepalli
  • Roger C. Hardie
  • Mikko Juusola
چکیده

Synaptic feedback from interneurons to photoreceptors can help to optimize visual information flow by balancing its allocation on retinal pathways under changing light conditions. But little is known about how this critical network operation is regulated dynamically. Here, we investigate this question by comparing signaling properties and performance of wild-type Drosophila R1-R6 photoreceptors to those of the hdc (JK910) mutant, which lacks the neurotransmitter histamine and therefore cannot transmit information to interneurons. Recordings show that hdc (JK910) photoreceptors sample similar amounts of information from naturalistic stimulation to wild-type photoreceptors, but this information is packaged in smaller responses, especially under bright illumination. Analyses reveal how these altered dynamics primarily resulted from network overload that affected hdc (JK910) photoreceptors in two ways. First, the missing inhibitory histamine input to interneurons almost certainly depolarized them irrevocably, which in turn increased their excitatory feedback to hdc (JK910) R1-R6s. This tonic excitation depolarized the photoreceptors to artificially high potentials, reducing their operational range. Second, rescuing histamine input to interneurons in hdc (JK910) mutant also restored their normal phasic feedback modulation to R1-R6s, causing photoreceptor output to accentuate dynamic intensity differences at bright illumination, similar to the wild-type. These results provide mechanistic explanations of how synaptic feedback connections optimize information packaging in photoreceptor output and novel insight into the operation and design of dynamic network regulation of sensory neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Carcinine in Signaling at the Drosophila Photoreceptor Synapse

The Drosophila melanogaster photoreceptor cell has long served as a model system for researchers focusing on how animal sensory neurons receive information from their surroundings and translate this information into chemical and electrical messages. Electroretinograph (ERG) analysis of Drosophila mutants has helped to elucidate some of the genes involved in the visual transduction pathway downs...

متن کامل

Histamine Recycling Is Mediated by CarT, a Carcinine Transporter in Drosophila Photoreceptors

Histamine is an important chemical messenger that regulates multiple physiological processes in both vertebrate and invertebrate animals. Even so, how glial cells and neurons recycle histamine remains to be elucidated. Drosophila photoreceptor neurons use histamine as a neurotransmitter, and the released histamine is recycled through neighboring glia, where it is conjugated to β-alanine to form...

متن کامل

Long-distance mechanism of neurotransmitter recycling mediated by glial network facilitates visual function in Drosophila.

Neurons rely on glia to recycle neurotransmitters such as glutamate and histamine for sustained signaling. Both mammalian and insect glia form intercellular gap-junction networks, but their functional significance underlying neurotransmitter recycling is unknown. Using the Drosophila visual system as a genetic model, here we show that a multicellular glial network transports neurotransmitter me...

متن کامل

The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina.

Flies recycle the photoreceptor neurotransmitter histamine by conjugating it to β-alanine to form β-alanyl-histamine (carcinine). The conjugation is regulated by Ebony, while Tan hydrolyses carcinine, releasing histamine and β-alanine. In Drosophila, β-alanine synthesis occurs either from uracil or from the decarboxylation of aspartate but detailed roles for the enzymes responsible remain uncle...

متن کامل

The carcinine transporter CarT is required in Drosophila photoreceptor neurons to sustain histamine recycling

Synaptic transmission from Drosophila photoreceptors to lamina neurons requires recycling of histamine neurotransmitter. Synaptic histamine is cleared by uptake into glia and conversion into carcinine, which functions as transport metabolite. How carcinine is transported from glia to photoreceptor neurons remains unclear. In a targeted RNAi screen for genes involved in this pathway, we identifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in neural circuits

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016